Menu
Sign In Search Podcasts Charts Entities Add Podcast API Pricing
Podcast Image

Advanced Machine Learning

10. Time Series

17 Nov 2024

Description

Forecasting, the process of predicting future events, is a fundamental element of many disciplines, including economics, meteorology, and social sciences. This text provides an overview of time series analysis, a powerful technique for understanding and forecasting data that evolves over time. The document explores the components of a time series, including trend, cyclical, seasonal, and irregular components. It also outlines quantitative forecasting methods, such as moving averages, exponential smoothing, and autoregressive models, which utilize historical data to make predictions. Finally, the text delves into stationarity, a crucial property for time series data, and discusses the ARIMA model, which is widely used for forecasting non-stationary time series.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

No transcription available yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.